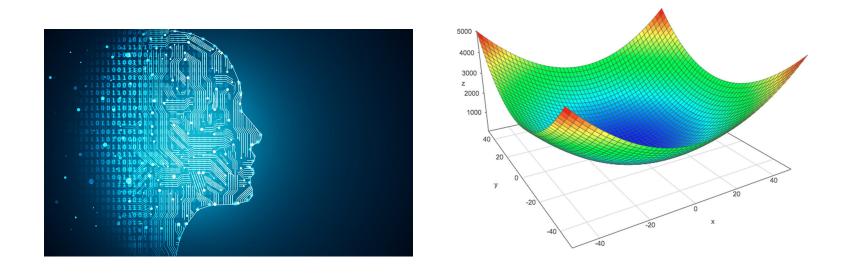
Convex Optimization and Machine Learning



Sunghee Yun

Head of R&D Gauss Labs

What will be covered today

- Convex Optimization
 - why convex optimization?
 - optimization problems
 - definition of convex optimization
 - all machine learning problems are optimization problems
- What is Machine Learning?
- Different Perspectives on Machine Learning
 - statistical perspective
 - numerical algorithmic perspectives
 - computer scientific perspective
 - performance acceleration exploiting hardware architecture and parallelism

Prerequisite for this talk

This talk will assume the audience

- has been exposed to basic linear algebra and calculus
- \bullet knows what function from \mathbf{R}^n to \mathbf{R} means

$$f(x) = f(x_1, \dots, x_n)$$

knows what gradient is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

- example: $g: \mathbf{R}^3 \to \mathbf{R}$

$$g(x_1, x_2, x_3) = x_1^2 + 1.2x_2x_3 - 0.5x_1x_3^3 + e^{x_2}$$

$$\begin{bmatrix} 2x_1 - 0.5x_3^3 \\ 1.2 & 1.2 \end{bmatrix}$$

$$\nabla g(x) = \begin{bmatrix} 2x_1 - 0.5x_3^3 \\ 1.2x_3 + e^{x_2} \\ 1.2x_2 - 1.5x_1x_3^2 \end{bmatrix}$$

• can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

$$Ax \leq b \Leftrightarrow \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} x \leq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \Leftrightarrow a_i^T x \leq b_i \text{ for } i = 1, \dots, m,$$

for $A \in \mathbf{R}^{m \times n}$, $x \in \mathbf{R}^n$, and $b \in \mathbf{R}^m$

- but,

$$A\succeq 0 \Leftrightarrow A=A^T \text{ and } x^TAx\geq 0 \text{ for all } x\in \mathbf{R}^n$$

$$A\succ 0 \Leftrightarrow A=A^T \text{ and } x^TAx>0 \text{ for all nonzero } x\in \mathbf{R}^n$$
 for $A\in \mathbf{R}^{n\times n}$

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, too!

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, too!

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, tool

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, too!

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, too!

- many machine learning algorithms (inherently) depend on convex optimization
- quite a few optimization problems can (actually) be solved
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated to convex optimization
- convex optimization sheds lights on understanding intrinsic property and structure of all optimization problems
 - hence, on fundamentals of machine learning algorithms, too!

Mathematical optimization

mathematical optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

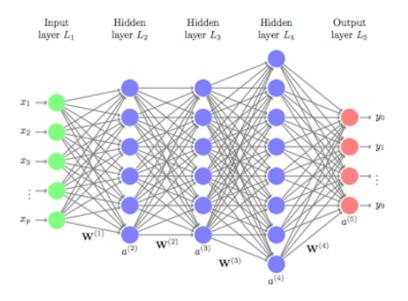
- $-x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbf{R}^n$ is (vector) optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is objective function
- $f_i : \mathbf{R}^n \to \mathbf{R}$ are inequality constraint functions
- $-h_i: \mathbf{R}^n \to \mathbf{R}$ are equality constraint functions

Optimization problem examples

- circuit optimization
 - optimization variables: transistor widths, resistances, capacitances, inductances
 - objective: operating speed (or equivalently, maximum delay)
 - constraints: area, power consumption
- portfolio optimization
 - optimization variables: amounts invested in different assets
 - objective: expected return, overall risk, return variance
 - constraints: budget

Optimization problem examples

- machine learning
 - optimization variables: model parameters (e.g., neural net weights)
 - objective: loss function / test error
 - constraints: network architecture



High level optimization problem examples

- virtual metrology
 - optimization variables: prediction model
 - objective: R squared, MSE, MAE, MAPE, soft-max error, worse-case error
 - constraints: # data, data collection period
- statistical process control
 - optimization variables: hypothesis test method and work flow
 - objective: engineers' time saving, root cause ranks, root cause detection rate
 - constraints: data availability

Solution methods

- for general optimization problems
 - extremely difficult to solve (practically impossible to solve), e.g., TSP
 - most methods try to find (good) suboptimal solutions, e.g., using heuristics
- some exceptions
 - least-squares (LS)
 - liner programming (LP)
 - semidefinite programming (SDP)

Least-squares (LS)

• least-squares (LS) problem:

minimize
$$||Ax - b||_2^2 = \sum_{i=1}^m (a_i^T x - b_i)^2$$

- analytic solution: any solution satisfying $(\boldsymbol{A}^T\boldsymbol{A})\boldsymbol{x}^* = \boldsymbol{A}^T\boldsymbol{b}$
- extremely reliable and efficient algorithms
- has been there at least since Gauss
- applications
 - LS problems are easy to recognize
 - has huge number of applications, e.g., line fitting

Linear programming (LP)

• linear program (LP):

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

- no analytic solution
- reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
- has been there at least since Fourier
- systematical algorithm existed since World War II
- applications
 - less obvious to recognize (than LS)
 - lots of problems can be cast into LP, e.g., network flow problem

Semidefinite programming (SDP)

• semidefinite program (SDP):

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + \cdots + x_n F_n \succeq 0$

- no analytic solution
- but, reliable and efficient algorithms exist, e.g., interior-point method
- recent technology
- applications
 - never easy to recognize
 - lots of problems, e.g., optimal control theory, can be cast into SDP
 - extremely non-obvious, but convex, hence global optimality easily achieved!

Max-det problem (extension of SDP)

• max-det program:

minimize
$$c^T x + \log \det(F_0 + x_1 F_1 + \dots + x_n F_n)$$

subject to $G_0 + x_1 G_1 + \dots + x_n G_n \succeq 0$
 $F_0 + x_1 F_1 + \dots + x_n F_n \succ 0$

- no analytic solution
- but, reliable and efficient algorithms exist, e.g., interior-point method
- recent technology
- applications
 - never easy to recognize
 - lots of stochastic optimization problems, e.g., every covariance matrix is positive semidefinite
 - again convex, hence global optimality (relatively) easily achieved!

Common features in these exceptions?

- they are convex optimization problems!
- convex optimization:

minimize
$$f_0(x)$$
 subject to $f_i(x) \preceq_{K_i} 0, \ i=1,\ldots,m$ $Ax=b$

where

- $f_0(\lambda x + (1-\lambda)y) \le \lambda f_0(x) + (1-\lambda)f_0(y)$ for all $x, y \in \mathbf{R}^n$ and $0 \le \lambda \le 1$
- $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ are K_i -convex w.r.t. proper cone $K_i \subseteq \mathbf{R}^{k_i}$
- all equality constraints are linear

Convex optimization

algorithms

- classical algorithms like simplex method still work well for many LPs
- many state-of-the-art algorithms develoled for (even) large-scale convex optimization problems
 - * barrier methods
 - * primal-dual interior-point methods

applications

- huge number of engineering and scientific problems are (or can be cast into) convex optimization problems
- many others can be (approximately) solved using convex relaxation

What's the fuss about convex optimization? Here's why!

- which one of these problems are easier to solve?
 - (generalized) geometric program with n=3,000 variables and m=1,000 constraints

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{p_0} \alpha_{0,i} x_1^{\beta_{0,i,1}} \cdots x_n^{\beta_{0,i,n}} \\ \text{subject to} & \sum_{i=1}^{p_j} \alpha_{j,i} x_1^{\beta_{j,i,1}} \cdots x_n^{\beta_{j,i,n}} \leq 1, \ j=1,\ldots,m \end{array}$$

with
$$\alpha_{j,i} \geq 0$$
 and $\beta_{j,i,k} \in \mathbf{R}$

- \Rightarrow the global optimum can be found within 1 minute using your laptop!
- minimization of 10th order polynomial of n=20 variables with no constraint

minimize
$$\sum_{i_1=1}^{10} \cdots \sum_{i_n=1}^{10} c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n}$$

with
$$c_{i_1,...,i_n} \in \mathbf{R}$$

 \Rightarrow you *cannot* solve it

What's the fuss about convex optimization? Here's why!

- which one of these problems are easier to solve?
 - (generalized) geometric program with n=3,000 variables and m=1,000 constraints

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{p_0} \alpha_{0,i} x_1^{\beta_{0,i,1}} \cdots x_n^{\beta_{0,i,n}} \\ \text{subject to} & \sum_{i=1}^{p_j} \alpha_{j,i} x_1^{\beta_{j,i,1}} \cdots x_n^{\beta_{j,i,n}} \leq 1, \ j=1,\ldots,m \end{array}$$

with $\alpha_{j,i} \geq 0$ and $\beta_{j,i,k} \in \mathbf{R}$

- \Rightarrow the global optimum can be found within 1 minute using your laptop!
- minimization of 10th order polynomial of n=20 variables with no constraint

minimize
$$\sum_{i_1=1}^{10} \cdots \sum_{i_n=1}^{10} c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n}$$

with
$$c_{i_1,...,i_n} \in \mathbf{R}$$

 \Rightarrow you *cannot* solve it

What's the fuss about convex optimization? Here's why!

- which one of these problems are easier to solve?
 - (generalized) geometric program with n=3,000 variables and m=1,000 constraints

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{p_0} \alpha_{0,i} x_1^{\beta_{0,i,1}} \cdots x_n^{\beta_{0,i,n}} \\ \text{subject to} & \sum_{i=1}^{p_j} \alpha_{j,i} x_1^{\beta_{j,i,1}} \cdots x_n^{\beta_{j,i,n}} \leq 1, \ j=1,\ldots,m \end{array}$$

with $\alpha_{j,i} \geq 0$ and $\beta_{j,i,k} \in \mathbf{R}$

- \Rightarrow the global optimum can be found within 1 minute using your laptop!
- minimization of 10th order polynomial of n=20 variables with no constraint

minimize
$$\sum_{i_1=1}^{10} \cdots \sum_{i_n=1}^{10} c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n}$$

with
$$c_{i_1,...,i_n} \in \mathbf{R}$$

 \Rightarrow you *cannot* solve it!

Convex Optimization

- convex optimization problems can be solved extremely reliably (and fast)
- a local minimum is a global minimum, which is implied by

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

ullet nice theoretical property, e.g., self-concordance implies complexity bound (for Newton's method)

$$\frac{f(x_0) - p^*}{\gamma} + \log_2 \log_2(1/\epsilon)$$

• even better pratical performance!

Mathematical formulation for supervised learning

- ullet given training set, $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$, where $x^{(i)}\in\mathbf{R}^p$ and $y^{(i)}\in\mathbf{R}^q$
- ullet want to find function $g_{ heta}: \mathbf{R}^p o \mathbf{R}^q$ parameterized by learning parameter, $heta \in \mathbf{R}^n$
 - $-g_{\theta}(x)$ desired to be as close as possible to y for future/unseen data $(x,y) \in \mathbf{R}^p \times \mathbf{R}^q$
 - i.e., $g_{\theta}(x) \sim y$
- ullet define a loss function $l: \mathbf{R}^q \times \mathbf{R}^q o \mathbf{R}_+$
- solve the optimization problem:

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)})$$
 subject to $\theta \in \Theta$

Linear regression

- (simple) linear regression is a supervised learning problem when
 - -q=1, *i.e.*, the output is scalar

$$-g_{ heta}(x)= heta^T\left[egin{array}{c} 1 \ x \end{array}
ight]= heta_0+ heta_1x_1+\cdots+ heta_px_p, \ i.e., \ n=p+1$$

- $l: \mathbf{R} \times \mathbf{R} \to \mathbf{R}_+$ is defined by $l(y_1, y_2) = (y_1 y_2)^2$
- $-\Theta=\mathbf{R}^{p+1}$, i.e., parameter domain is the set of all real numbers
- formulation

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$

Solution method for linear regression

linear regression is nothing but LS since

$$mf(\theta) = \sum_{i=1}^{m} \left(\theta^{T} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right)^{2} = \left\| \begin{bmatrix} 1 & x^{(1)^{T}} \\ \vdots & \vdots \\ 1 & x^{(m)^{T}} \end{bmatrix} \theta - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \right\|_{2}^{2}$$
$$= \|X\theta - y\|_{2}^{2}$$

ullet convex in heta, hence obtains its global optimality when the gradient vanishes, i.e.,

$$m\nabla f(\theta) = 2X^{T}(X\theta - y) = 2((X^{T}X)\theta - X^{T}y) = 0$$

- analytic solution exists and in practice,
 - QR decomposition or single value decomposition (SVD) can be used

Multiple output linear regression

multiple output linear regression is a ML method when

$$egin{aligned} -\ g_{ heta}(x) &= heta^T \left[egin{array}{c} 1 \ x \end{array}
ight] = \left[egin{array}{c} heta_{1,0} + heta_{1,1}x_1 + \cdots + heta_{1,p}x_p \ dots \ heta_{q,0} + heta_{q,1}x_1 + \cdots + heta_{q,p}x_p \end{array}
ight] . \end{aligned}$$

- $l: \mathbf{R}^q imes \mathbf{R}^q o \mathbf{R}_+$ is defined by $l(y_1,y_2) = \|y_1 y_2\|_2^2$
- $-\Theta = \mathbf{R}^{(p+1)\times q}$, i.e., parameter domain is the set of all real numbers
- formulation

minimize
$$f(heta) = rac{1}{m} \sum_{i=1}^m \left\| heta^T \left[egin{array}{c} 1 \ x^{(i)} \end{array}
ight] - y^{(i)}
ight\|_2^2$$

Solution method for multiple output linear regression

linear regression is nothing but LS since

$$mf(\theta) = \sum_{i=1}^{m} \left\| \theta^{T} \begin{bmatrix} 1 \\ x^{(i)} \end{bmatrix} - y^{(i)} \right\|_{2}^{2}$$

$$= \left\| \begin{bmatrix} 1 & x^{(1)^{T}} & \cdots & 1 & x^{(1)^{T}} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & x^{(m)^{T}} & \cdots & 1 & x^{(m)^{T}} \end{bmatrix} \tilde{\theta} - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \right\|_{2}^{2}$$

$$= \left\| \tilde{X}\tilde{\theta} - y \right\|_{2}^{2}$$

where $\tilde{X} \in \mathbf{R}^{m \times q(p+1)}$ and $\tilde{\theta} \in \mathbf{R}^{q(p+1)}$

hence, the same method applies

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$
 subject to $\theta_1 \geq 0$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms solve it (almost) as easily as original problem
- but, now with any number of convex constraints

minimize
$$f(heta)=rac{1}{m}\sum_{i=1}^m\left(heta^T\left[egin{array}{c}1\\x^{(i)}\end{array}
ight]-y^{(i)}
ight)^2$$
 subject to $h_i(heta)\leq 0$ for $i=1,\ldots,l$ $A heta=b$

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$
 subject to
$$\theta_1 \geq 0$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms solve it (almost) as easily as original problem
- but, now with any number of convex constraints

minimize
$$f(heta)=rac{1}{m}\sum_{i=1}^m\left(heta^T\left[egin{array}{c}1\\x^{(i)}\end{array}
ight]-y^{(i)}
ight)^2$$
 subject to $h_i(heta)\leq 0$ for $i=1,\ldots,l$ $A heta=b$

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$
 subject to
$$\theta_1 \geq 0$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms solve it (almost) as easily as original problem
- but, now with any number of convex constraints

minimize
$$f(heta)=rac{1}{m}\sum_{i=1}^m\left(heta^T\left[egin{array}{c}1\\x^{(i)}\end{array}
ight]-y^{(i)}
ight)^2$$
 subject to $h_i(heta)\leq 0$ for $i=1,\ldots,l$ $A heta=b$

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$
 subject to
$$\theta_1 \geq 0$$

- no analytic solution exists (with only one constraint) in general
- however, convex optimization algorithms solve it (almost) as easily as original problem
- but, now with any number of convex constraints

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\theta^T \left[\begin{array}{c} 1 \\ x^{(i)} \end{array} \right] - y^{(i)} \right)^2$$
 subject to
$$h_i(\theta) \leq 0 \text{ for } i = 1, \dots, l$$

$$A\theta = b$$

Ridge regression

• Ridge regression solves the following problem: (for some $\lambda > 0$)

minimize
$$f_0(x) = ||Ax - y||_2^2 + \lambda ||x||_2^2$$

- regularization, e.g., to preventing overfitting
- can be extended to (without sacraficing solvability!)

minimize
$$f_0(x) = \|Ax - y\|_2^2 + \lambda \|x\|_2^2 = \left\| \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|_2^2$$
 subject to
$$f_i(x) \leq 0, \ i = 1, \dots, m$$

$$h_i(x) = 0, \ i = 1, \dots, p$$

ullet can be incorporated into gradient descent algorithm, e.g.,

$$\nabla f(x) = 2A^{T}(Ax - y) + 2\lambda x$$

Least absolute shrinkage & selection operator (lasso)

• Lasso solves (a problem equivalent to) the following problem:

minimize
$$f_0(x) = ||Ax - y||^2 + \lambda ||x||_1$$

- 1-norm penalty term for parameter selection
- similar to drop-out technique for regularization
- However, the objective funtion *not* smooth.
- simple trick would solve this problem (with additional convex inequality constraints and affine equality constraints)

minimize
$$f_0(x) = \|Ax - y\|^2 + \lambda \sum_{i=1}^n z_i$$

subject to $-z_i \le x_i \le z_i, \ i = 1, \dots, n$
 $f_i(x) \le 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

Support vector machine

- problem definition:
 - given $x^{(i)} \in \mathbf{R}^p$: input data, and $y^{(i)} \in \{-1,1\}$: output labels
 - find hyperplane which separates two different classes as distinctively as possible (in some measure)
- (typical) formulation:

minimize
$$\begin{aligned} &\|a\|_2^2 + \gamma \sum_{i=1}^m u_i \\ &\text{subject to} \quad y^{(i)}(a^Tx^{(i)} + b) \geq 1 - u_i, \ i = 1, \dots, m \\ &\quad u \succ 0 \end{aligned}$$

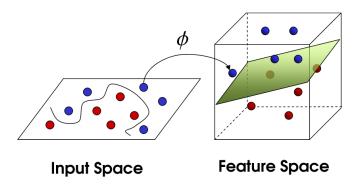
- convex optimization problem, hence stable and efficient algorithms exist even for very large problems
- has worked extremely well in practice (until... deep learning boom)

Support vector machine with kernels

- use feature transformation $\phi: \mathbf{R}^p \to \mathbf{R}^q$ (with q > p)
- formulation:

minimize
$$\begin{aligned} &\|\tilde{a}\|_2^2 + \gamma \sum_{i=1}^m \tilde{u}_i \\ \text{subject to} & y^{(i)}(\tilde{a}^T \phi(x^{(i)}) + \tilde{b}) \geq 1 - \tilde{u}_i, \ i = 1, \dots, m \\ & \tilde{u} \succeq 0 \end{aligned}$$

still convex optimization problem



Duality

- every (constrained) optimization problem has a dual problem (whether or not it's a convex optimization problem)
- every dual problem is a *convex optimization problem* (whether or not it's a convex optimization problem)
- duality provides *optimality certificate*, hence plays *central role* for modern optimization and machine learning algorithm implementation
- (usually) solving one readily solves the other!

Lagrangian

standard form problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

where $x \in \mathbf{R}^n$ is optimization variable, \mathcal{D} is domain, p^* is optimal value

ullet Lagrangian: $L: \mathbf{R}^n imes \mathbf{R}^m imes \mathbf{R}^p o \mathbf{R}$ with $\operatorname{\mathbf{dom}} L = \mathcal{D} imes \mathbf{R}^m imes \mathbf{R}^p$ defined by

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- λ_i : Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i : Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

ullet Lagrange dual function: $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ defined by

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- g is always concave
- $g(\lambda, \nu)$ can be $-\infty$

• lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

Dual problem

• Lagrange dual problem:

$$\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- is a convex optimization problem
- provides a lower bound on p^*
- ullet let d^* denote the optimal value for the dual problem
 - week duality: $d^* \leq p^*$
 - strong duality: $d^* = p^*$

Dual problem provides optimality certificate!

- (almost) all algorithms solves the dual problem simultaneously
- Lagrangian dual variables obtained with no additional cost
- if iterative algorithm generates solution sequence,

$$(x^{(1)}, \lambda^{(1)}, \nu^{(1)}) \to (x^{(2)}, \lambda^{(2)}, \nu^{(2)}) \to (x^{(3)}, \lambda^{(3)}, \nu^{(3)}) \to \cdots$$

then, we have an optimality certificate:

$$f(x^{(k)}) - p^* \le f(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)})$$

Weak duality

- ullet weak duality implies $d^* \leq p^*$
 - always true (by construction of dual problem)
 - provides *nontrivial* lower bounds, especially, for difficult problems, e.g., solving the following SDP:

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu \\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$$

gives a lower bound for max-cut problem

$$\begin{array}{ll} \text{minimize} & x^T W x \\ \text{subject to} & x_i^2 = 1, \ i = 1, \dots, n \end{array}$$

Strong duality

- $\bullet \ \ \text{strong duality implies} \ d^* = p^*$
 - not necessarily hold; does not hold in general
 - usually holds for convex optimization problems
 - conditions which guarantee strong duality in convex problems called constraint qualifications

Duality example: LP

• primal problem:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

dual function:

$$g(\lambda) = \inf_{x} \left(\left(c + A^{T} \lambda \right)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & \text{if } A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

• dual problem:

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$$

- Slater's condition implies that $p^*=d^*$ if $A\tilde{x}\prec b$ for some \tilde{x}
- truth is, $p^* = d^*$ except when both primal and dual are infeasible

Duality example: QP

• primal problem (assuming $P \in \mathbf{S}_{++}^n$):

minimize
$$x^T P x$$
 subject to $Ax \leq b$

• dual function:

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (Ax - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

• dual problem:

$$\begin{array}{ll} \text{maximize} & -\lambda^T A P^{-1} A^T \lambda / 4 - b^T \lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- Slater's condition implies that $p^*=d^*$ if $A\tilde{x}\prec b$ for some \tilde{x}
- truth is, $p^* = d^*$ always!

Complementary slackness

ullet assume strong dualtiy holds, x^* is primal optimal, and (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

- thus, all inequalities are tight, *i.e.*, they hold with equalities
 - x^* minimizes $L(x, \lambda^*, \nu^*)$
 - $\lambda_i^* f_i(x^*) = 0$ for all i, known as complementary slackness

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0, \quad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

- KKT (optimality) conditions consist of
 - primal feasibility: $f_i(x) \leq 0$ for all $1 \leq i \leq m$, $h_i(x) = 0$ for all $1 \leq i \leq p$
 - dual feasibility: $\lambda \succeq 0$
 - complementary slackness: $\lambda_i f_i(x) = 0$
 - zero gradient of Lagrangian: $\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$
- ullet if strong daulity holds and x^* , λ^* , and u^* are optimal, they satisfy KKT condtions!

KKT conditions for convex optimization problem

- if \tilde{x} , $\tilde{\lambda}$, and $\tilde{\nu}$ satisfy KKT for convex optimization problem, then they are optimal!
 - complementary slackness implies $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
 - last conidtion together with convexity implies $g(\tilde{\lambda},\tilde{\nu})=L(\tilde{x},\tilde{\lambda},\tilde{\nu})$
- ullet thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist λ , ν that satisfy KKT conditions
 - Slater's condition implies strong dualtiy, hence dual optimum is attained
 - this generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Machine Learning

machine learning

- is the subfield of computer science that "gives computers the ability to learn without being explicitly programmed." (Arthur Samuel, 1959)
- is not magic, still less intelligent than humans for most of the work
- rather the strength lies in facts such as
 - * it does not complain about their salary
 - * it does not make mistakes because it keeps doing some repetitive work
 - * it can analyze 1 MM customer activities overnight and come up with book recommendation for each of them
 - * it can be hooked to the network to get smarter
 - * it can use other senses like infra-red, short-range radar

Machine Learning: Two famous quotes

- The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms.
 - Albert Einstein
- Civilization advances by extending the number of important operations which we can
 perform without thinking about them. (Operations of thought are like cavalry charges
 in a battle they are strictly limited in number, they require fresh horses, and must
 only be made at decisive moments.)
 - Alfred North Whitehead

Two famous quotes

- The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms.
 - Albert Einstein
- Civilization advances by extending the number of important operations which we can
 perform without thinking about them. (Operations of thought are like cavalry charges
 in a battle they are strictly limited in number, they require fresh horses, and must
 only be made at decisive moments.)
 - Alfred North Whitehead

Two famous quotes

- The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms.
 - Albert Einstein
- Civilization advances by extending the number of important operations which we can perform without thinking about them. (Operations of thought are like cavalry charges in a battle they are strictly limited in number, they require fresh horses, and must only be made at decisive moments.)
 - Alfred North Whitehead

Two famous quotes

- The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms.
 - Albert Einstein
- Civilization advances by extending the number of important operations which we can perform without thinking about them. (Operations of thought are like cavalry charges in a battle they are strictly limited in number, they require fresh horses, and must only be made at decisive moments.)
 - Alfred North Whitehead

Different perspectives on machine learning

- statistical view
- numerical algorithmic perspective
- computer scientific perspective
- performance acceleration exploiting hardware architecture and parallelism

Statistical perspective

- ullet assume data set $X_m = \{x^{(1)}, \dots, x^{(m)}\}$
 - drawn independently from (true, but unknown) data generating distribution $p_{\mathrm{data}}(x)$
- Maximum Likelihood Estimation (MLE) is to solve

maximize
$$p_{\text{data}}(X;\theta) = \prod_{i=1}^{m} p_{\text{data}}(x^{(i)};\theta)$$

equivalent, but numerically friendly formulation:

maximize
$$\log p_{\mathrm{data}}(X; \theta) = \sum_{i=1}^{m} \log p_{\mathrm{data}}(x^{(i)}; \theta)$$

Equivalence of MLE to KL divergence

• (information theory) Kullback-Leibler (KL) divergence defines distance between two probability distributions, p and q:

$$D_{\mathrm{KL}}(p||q) = \mathbf{E} \log p(X)/q(X) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

ullet KL divergence between data distribution, $p_{
m data}$, and model distribution, $p_{
m model}$, can be approximated by Monte Carlo method as

$$D_{\mathrm{KL}}(p_{\mathrm{data}} \| p_{\mathrm{model}}) \simeq \frac{1}{m} \sum_{i=1}^{m} (\log p_{\mathrm{data}}(x^{(i)}) - \log p_{\mathrm{model}}(x^{(i)}; \theta))$$

• hence, minimizing the KL divergence is equivalent to maximizing the log-likelihood!

Equivalence of MLE to MSE

ullet assume the model is Gaussian, *i.e.*, $y \sim \mathcal{N}(g_{ heta}(x), \Sigma)$:

$$p(y|x;\theta) = \frac{1}{\sqrt{2\pi}^p |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \left(y^{(i)} - g_{\theta}(x^{(i)})\right)^T \Sigma^{-1} \left(y^{(i)} - g_{\theta}(x^{(i)})\right)\right)$$

ullet assuming that $\Sigma=lpha I_p$, the log-likelihood becomes

$$\sum_{i=1}^{m} \log p(x^{(i)}, y^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta) p(x^{(i)})$$

$$= -\sum_{i=1}^{m} \|y^{(i)} - g_{\theta}(x^{(i)})\|_{2}^{2} / 2\alpha - \frac{pm}{2} \log(2\pi\alpha) + \sum_{i=1}^{m} \log p(x^{(i)})$$

• hence, maximizing log-likelihood is equivalent to minimizing mean-square-error (MSE)!

Numerical algorithmic perspectives

basic formulation:

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)})$$

• formulation with regularization:

minimize
$$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)}) + \gamma r(\theta)$$

• stochastic gradient descent (SGD):

$$\theta^{(k+1)} = \theta^{(k)} - \alpha_k \nabla f(\theta^{(k)})$$

- some other momentum and adaptive methods:
 - Nesterov's accelerated gradient method, AdaGrad, RMSProp, Adam, etc.

Optimality

- How can we maximize the chance to reach (points close to) the global optimum?
 - stochastic gradient method?
 - some second-order method?
- How do we prevent overfitting?
- Is reaching the (near) global optimum always a good thing?

In summary

- convex optimization problems are one of few optimization classes that can actually be solved
- many ML problems are (or can be cast into) convex optimizations
- knowledge on (convex) optimization helps a lot to solve many AI problems
- ML is not about algorithms; it's about machine power + (dumb) intelligence
- diverse perspectives/principles must be mastered for good Gaussian applied scientists!

Thank you!