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Sunghee Yun Convex Optimization and Machine Learning

What will be covered today

e Convex Optimization
— why convex optimization?
— optimization problems
— definition of convex optimization

— all machine learning problems are optimization problems
e What is Machine Learning?
e Different Perspectives on Machine Learning

— statistical perspective

— numerical algorithmic perspectives
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Prerequisite for this talk

This talk will assume the audience

® has been exposed to basic linear algebra and calculus

e knows what function from R™ to R means
f(x) = f(x1,...,xy)

e knows what gradient is
- 0
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L al'n
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— example: g : R®* 5 R
g(x1, T2, T3) = a:? + 1.2x9x3 — O.5£U133§ + 2
2z, — 0.5

Vg(x) = 1.2x3 + €2
1.2z5 — 1.5z175

e can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

T
Ax < b & : r < : @a?mﬁbiforizl,...,m,
at b

for Ae R™" € R", and b € R™
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— but,
A0 A= A" and 2" Az > 0 for all z € R"

A0« A= A" and 27 Az > 0 for all nonzero z € R”
for A € R™*"
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Why convex optimization?
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization

e quite a few optimization problems can (actually) be solved
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
e quite a few optimization problems can (actually) be solved

e many engineering and scientific problems can be cast into convex optimization problems
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
e quite a few optimization problems can (actually) be solved
e many engineering and scientific problems can be cast into convex optimization problems

® many more can be approximated to convex optimization
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization

e quite a few optimization problems can (actually) be solved

e many engineering and scientific problems can be cast into convex optimization problems
® many more can be approximated to convex optimization

e convex optimization sheds lights on understanding intrinsic property and structure of
all optimization problems
— hence, on fundamentals of machine learning algorithms, too!
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Mathematical optimization

e mathematical optimization problem:

minimize  fo(x)
subject to  fi(z) <0, i =

|
[ —
S

T . . :
—z=| x z, | € R"is (vector) optimization variable

— fo : R™ — R is objective function

— fi; : R™ — R are inequality constraint functions

— h; : R"™ — R are equality constraint functions
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Optimization problem examples

® circuit optimization

— optimization variables: transistor widths, resistances, capacitances, inductances
— objective: operating speed (or equivalently, maximum delay)

— constraints: area, power consumption
e portfolio optimization

— optimization variables: amounts invested in different assets
— objective: expected return, overall risk, return variance

— constraints: budget
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Optimization problem examples

e machine learning

— optimization variables: model parameters (e.g., neural net weights)
— objective: loss function / test error
— constraints: network architecture

Input Hidden Hidden Hidden Onatput
layer Ly layer Ly layer Ly layer Ly layer Ly
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High level optimization problem examples

e virtual metrology

— optimization variables: prediction model
— objective: R squared, MSE, MAE, MAPE, soft-max error, worse-case error

— constraints: # data, data collection period

e statistical process control

— optimization variables: hypothesis test method and work flow

— objective: engineers’ time saving, root cause ranks, root cause detection rate

— constraints: data availability
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Solution methods

e for general optimization problems

— extremely difficult to solve (practically impossible to solve), e.g., TSP

— most methods try to find (good) suboptimal solutions, e.g., using heuristics
® some exceptions

— least-squares (LS)

— liner programming (LP)

— semidefinite programming (SDP)
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Least-squares (LS)

e least-squares (LS) problem:

minimize ||Axz — b||§ = Z;Zl(afﬂﬁ — 51)2

— analytic solution: any solution satisfying (A% A)z* = A™b
— extremely reliable and efficient algorithms
— has been there at least since Gauss

e applications

— LS problems are easy to recognize

— has huge number of applications, e.g., line fitting
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Linear programming (LP)

e linear program (LP):

minimize clx

subjectto Ax <X b

— no analytic solution
— reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
— has been there at least since Fourier

— systematical algorithm existed since World War I
e applications

— less obvious to recognize (than LS)

— lots of problems can be cast into LP, e.g., network flow problem
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Semidefinite programming (SDP)

e semidefinite program (SDP):

minimize clx
subjectto Fo+x1F1+---+x,F,, =0

— no analytic solution

— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize
— lots of problems, e.g., optimal control theory, can be cast into SDP

— extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

® max-det program:

minimize clx + logdet(Fy + z1F1 + - - - + x, F})
subjectto Go+ x1G1+ -+ x2,G, = 0
Fo+x1Fy+---+xpFp, =0

— no analytic solution
— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize
— lots of stochastic optimization problems, e.g., every covariance matrix is positive
semidefinite

— again convex, hence global optimality (relatively) easily achieved!
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Common features in these exceptions?

e they are convex optimization problems!

® convex optimization:
minimize  fo(x)

subject to  fi(z) <k; 0, i =1,...,m
Ax = b

where
— fo(Az + (1= AN)y) < Afo(z) + (1 —A)fo(y) forallz,y € R"and 0 < A <1
- fi:R" — R¥i are K;-convex w.r.t. proper cone K; C RFi

— all equality constraints are linear
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Convex optimization

e algorithms

— classical algorithms like simplex method still work well for many LPs

— many state-of-the-art algorithms develoled for (even) large-scale convex optimization
problems

* barrier methods

x primal-dual interior-point methods

e applications

— huge number of engineering and scientific problems are (or can be cast into) convex
optimization problems

— many others can be (approximately) solved using convex relaxation
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What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k €R
— minimization of 10th order polynomial of n = 20 variables with no constraint
L 10 10 i1 :
minimize > ;g D1 Cipin®y T

with Ciq,...rin €R
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What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
= the global optimum can be found within 1 minute using your laptop!
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
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What'’s the fuss about convex optimization? Here's why!

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
= the global optimum can be found within 1 minute using your laptop!
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
= you cannot solve it!
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Convex Optimization

e convex optimization problems can be solved extremely reliably (and fast)

e a local minimum is a global minimum, which is implied by
f(y) > f(@) + Vi) (y — )

e nice theoretical property, e.g., self-concordance implies complexity bound (for Newton's
method)

f(xo) — p”
Y

+ log, log,(1/¢€)

e even better pratical performance!
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Mathematical formulation for supervised learning

e given training set, {(:13(1), y(l)), ey (az(m), y(m))}, where (¥ € R? and y¥ € RY
e want to find function gy : R” — RY parameterized by learning parameter, 6 € R"
— gp(x) desired to be as close as possible to y for future/unseen data (x, y) € R” xRY
— i.e, go(x) ~y
e define a loss function [ : R? Xx R? — Ry

e solve the optimization problem:

minimize  f(0) = % S l(gg(az(i)), y(i))
subjectto 6 € ©
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Linear regression

e (simple) linear regression is a supervised learning problem when

— qg = 1, i.e., the output is scalar

1

—ge(x)ZQT[ . } = 0o+ O1x1 + - - + Opxp, de, n =p+1

— 1:R x R = Ry is defined by I(y1,y2) = (y1 — y2)*
- ® =R e, parameter domain is the set of all real numbers

e formulation

2

minimize  f(0) = L >, <9T [ aji) ] _ y(z‘)>
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Solution method for linear regression

e linear regression is nothing but LS since

) 1 L0 ey

= T 1 (i) . . .
i=1 (m)

2
— HX@ - y||2

mf(6)

e convex in 6, hence obtains its global optimality when the gradient vanishes, i.e.,
mVF0) =2X" (X0 —y) =2((X"X)0 — X"y) =0

e analytic solution exists and in practice,
— QR decomposition or single value decomposition (SVD) can be used
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Multiple output linear regression

e multiple output linear regression is a ML method when

AT 1 010+ 01121+ -+ -+ 01,7
- go(x) =0 [ } = :

xr

9q,0 + eq,lxl + -+ Qq,pajp
— 1 : R? x R? — Ry is defined by I(y1, y2) = |ly1 — v2l/5
— @ = RPHxa o parameter domain is the set of all real numbers

e formulation

2

minimize  f(0) = L >,

1 1
QT[ CC(i) :| _y()

2
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Solution method for multiple output linear regression

e linear regression is nothing but LS since

m 2
T 1 )
mf(6) = > |6 |:x(i):|_y()
i=1 2
- - - - 2
1 Lo 1 Lof ) ey
|1 x(m)T 1 x(m)T | i y(m) 11l
N 2
= [ X0 —yll;

where X € R™*4(PtD) 354 g ¢ R2(PHD)

e hence, the same method applies
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How can we solve linear regression with constraints?
e what if we have one constraint?

minimize  f(0) = L >, (9T [ xt) } _ y(z')>

subjectto 61 > 0
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How can we solve linear regression with constraints?

e what if we have one constraint?

1 2

e 0) =52 (07 4] <)

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general
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How can we solve linear regression with constraints?

e what if we have one constraint?

1 2

e 0) =52 (07 4] <)

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general

e however, convex optimization algorithms solve it (almost) as easily as original problem
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How can we solve linear regression with constraints?

e what if we have one constraint?
1 2
minimize 9) = LS (9T , _ (@)
f(0) mzz:1< [ (0 } Y
subjectto 61 > 0
e no analytic solution exists (with only one constraint) in general

e however, convex optimization algorithms solve it (almost) as easily as original problem
e but, now with any number of convex constraints

2
minimize  f(0) = L 2", <9T [ L } _ yu))
x
subject to h;(0) < Ofori=1,...,1
A0 =b
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Ridge regression

e Ridge regression solves the following problem: (for some A > 0)
minimize  fo(z) = [|Az — y||; + Az

— regularization, e.g., to preventing overfitting
e can be extended to (without sacraficing solvability!)

2
L A Y
minimizefo(e) = [l Az vl + Al = | | 5, [o= |8
VI 0 ]|,
subject to  fi(z) <0, i=1,...,m
hi(x) =0, t1=1,...,p

e can be incorporated into gradient descent algorithm, e.g.,

Vilx) = ZAT(A$ —y) + 2z
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Least absolute shrinkage & selection operator (lasso)

e Lasso solves (a problem equivalent to) the following problem:
minimize  fo(z) = [[Az — y||* + Al|z[x

— 1-norm penalty term for parameter selection
— similar to drop-out technique for regularization

e However, the objective funtion not smooth.

e simple trick would solve this problem (with additional convex inequality constraints and
affine equality constraints)

minimize  fo(z) = ||[Az — y||? + A D27, 2

subjectto —z; < x; <z, 1=1,...,n
fz(:fc)g(), ’i:l,...,m
hi(x) =0, i=1,...,p
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Support vector machine

e problem definition:
— given z'¥ € R?: input data, and ¥V € {—1,1}: output labels
— find hyperplane which separates two different classes as distinctively as possible (in
some measure)

e (typical) formulation:

minimize  ||a|l3 + v Do, w
subject to y(i)(aTa:(i) +b0)>1—wu, t=1,...,m
u >0

— convex optimization problem, hence stable and efficient algorithms exist even for
very large problems

— has worked extremely well in practice (until... deep learning boom)
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Support vector machine with kernels

e use feature transformation ¢ : R” — R? (with ¢ > p)

e formulation:

minimize  ||a||3 + v > oim, G
subject to  yW(alp(x) +b) >1 -, i=1,...,m
@ >0

e still convex optimization problem

e o
¢
° /o0 .
e e
) ® '.
Input Space Feature Space

The 1st Gauss Day Colloquium (05-Feb-2021) 38



Sunghee Yun Convex Optimization and Machine Learning

Duality

every (constrained) optimization problem has a dual problem (whether or not it's a
convex optimization problem)

every dual problem is a convex optimization problem (whether or not it's a convex
optimization problem)

duality provides optimality certificate, hence plays central role for modern optimization
and machine learning algorithm implementation

(usually) solving one readily solves the other!
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Lagrangian

e standard form problem:

minimize  fo(x)
subject to fi(x) <0, i=1,...,m

I
[
iS)

where x € R" is optimization variable, D is domain, p* is optimal value
e Lagrangian: L : R" X R™ X R” —+ R with dom L = D x R™ x R? defined by

L(m7 >‘7 V) — fO(x) + Z Azfz(x) -+ Z Vih’i(aj)

— \;: Lagrange multiplier associated with f;(x) < 0
— v;: Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function

e Lagrange dual function: g : R™ X R” — R defined by

g\, v) = inf L(w,\,v) = inf <fo<x> +3 M) + Y vﬂu(w))
=1 1=1

— g is always concave
— g(A\, V) can be —o0

e lower bound property: if A > 0, then g(\,v) < p*
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Dual problem

e Lagrange dual problem:
maximize  g(A, v)
subjectto A >~ 0

— is a convex optimization problem

— provides a lower bound on p*

e let d* denote the optimal value for the dual problem
— week duality: d* < p*

— strong duality: d* = p*
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Dual problem provides optimality certificate!

e (almost) all algorithms solves the dual problem simultaneously
e lLagrangian dual variables obtained with no additional cost

e if iterative algorithm generates solution sequence,
(x(l), )\(1), y(l)) N (33(2), )\(2), V(Q)) N (33(3), )\(3)’ V(3)) e
then, we have an optimality certificate:

F@™y —p* < f(@®) — g(AP, )
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Weak duality

e weak duality implies d* < p*
— always true (by construction of dual problem)

— provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the
following SDP:
maximize —17v
subject to W 4 diag(v) =~ 0

gives a lower bound for max-cut problem

minimize W
subjectto =z =1, t=1,...,n
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Strong duality

*

e strong duality implies d* = p

— not necessarily hold; does not hold in general

— wusually holds for convex optimization problems

— conditions which guarantee strong duality in convex problems called constraint
qualifications
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Duality example: LP

e primal problem:
T

minimize cx
subjectto Ax <Xb
e dual function:

T T . T o
g(A):inf<(c_|_AT)\> x—bT)\>:{ b\ ifA'XAN+c=0

— 00 otherwise

e dual problem:

maximize —b’ \
subject to AT N+ c=0
A>=0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d" except when both primal and dual are infeasible
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Duality example: QP

e primal problem (assuming P € S _):

minimize ! Px
subjectto Ax <X b

e dual function:
1
g(A) = inf (acTP:I: + 2T (Az — b)) = —ATAPTIATA — b7

e dual problem:
maximize —A AP 1ATA/4 — b1\
subjectto A >~ 0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d* always!
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Complementary slackness

e assume strong dualtiy holds, =" is primal optimal, and (A™, v™) is dual optimal
m p

fo(z") = g(\",v") = inf (fo(w) +D A fil@m) + > v;khz-(w))
i=1 i=1

< fo(z) + D N fi(z") + D vihi(a")
1=1 1=1

< fo(z")
e thus, all inequalities are tight, i.e., they hold with equalities

— ™ minimizes L(xz, \*, V™)
— A/ fi(x™) = 0 for all ¢, known as complementary slackness
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Karush-Kuhn-Tucker (KKT) conditions

e KKT (optimality) conditions consist of
— primal feasibility: f;(x) < Oforall1 <7 <m, hi(xz) =0forall 1 <i<p
— dual feasibility: A >~ 0
— complementary slackness: \;f;(x) = 0

— zero gradient of Lagrangian: V fo(z) + >_." MV fi(z) + >0, v;Vhi(z) =0

e if strong daulity holds and =™, A\*, and v™ are optimal, they satisfy KKT condtions!
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KKT conditions for convex optimization problem
e if %, \, and U satisfy KKT for convex optimization problem, then they are optimal!
— complementary slackness implies fo(%) = L(&, X, D)
— last conidtion together with convexity implies 9(5\, v) = L(z, X, D)

e thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist
A, v that satisfy KKT conditions

— Slater’s condition implies strong dualtiy, hence dual optimum is attained

— this generalizes optimality condition V fo(x) = 0 for unconstrained problem
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Machine Learning

e machine learning

— is the subfield of computer science that “gives computers the ability to learn without
being explicitly programmed.” (Arthur Samuel, 1959)

— is not magic, still less intelligent than humans for most of the work

— rather the strength lies in facts such as
* 1t does not complain about their salary
* it does not make mistakes because it keeps doing some repetitive work
x i1t can analyze 1 MM customer activities overnight and come up with book
recommendation for each of them
it can be hooked to the network to get smarter
it can use other senses like infra-red, short-range radar
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Machine Learning: Two famous quotes

e The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest possible number of hypotheses or axioms.
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Two famous quotes

e The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest possible number of hypotheses or axioms.

— Albert Einstein
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Two famous quotes

e The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest possible number of hypotheses or axioms.

— Albert Einstein

e Civilization advances by extending the number of important operations which we can
perform without thinking about them. (Operations of thought are like cavalry charges
in a battle — they are strictly limited in number, they require fresh horses, and must
only be made at decisive moments.)
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Two famous quotes

e The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest possible number of hypotheses or axioms.

— Albert Einstein

e Civilization advances by extending the number of important operations which we can
perform without thinking about them. (Operations of thought are like cavalry charges
in a battle — they are strictly limited in number, they require fresh horses, and must
only be made at decisive moments.)

— Alfred North Whitehead
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Different perspectives on machine learning

e statistical view

e numerical algorithmic perspective
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Statistical perspective

e assume data set X,,, = {zV, ..., =™}
— drawn independently from (true, but unknown) data generating distribution pgata ()

e Maximum Likelihood Estimation (MLE) is to solve

maximize Pqata(X;0) = 1_[111 pdata(w(i); 0)

e equivalent, but numerically friendly formulation:

maximize 10g paata(X;0) = >, log pdata(w(i); 0)
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Equivalence of MLE to KL divergence

e (information theory) Kullback-Leibler (KL) divergence defines distance between two
probability distributions, p and g:

pm— = €T (@) M T
Dxr.(pllq) = Elog p(X)/q(X) = / p(x) log 2 5 d

e KL divergence between data distribution, pqata, and model distribution, pmodel, can be
approximated by Monte Carlo method as

1 = ) )
DKL(pdata”pmodel) =~ E Z(log pdata(x( )) - log pmodel<$( ); 9))
1=1

e hence, minimizing the KL divergence is equivalent to maximizing the log-likelihood!
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Equivalence of MLE to MSE

e assume the model is Gaussian, i.e., y ~ N (go(z), X):

1 1 . . T . ,
(4) (4) 1 (. (i) (4)
exp | —= (y — go(x ) > (y — go(x ))
V2r | 2|1/2 ( 2 ) )

p(ylz; 0) =

e assuming that X = «l), the log-likelihood becomes

> _logp(a",y";0) = > logp(y”|z"; 0)p(a")

1=1 =1

— i 0 pm — 0
= =Dy = go(=")3/20 = =~ log(2ma) + D logp(a)
1=1

1=1

e hence, maximizing log-likelihood is equivalent to minimizing mean-square-error (MSE)!
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Numerical algorithmic perspectives

e basic formulation:
minimize f(0) = % S l(ge(fﬂ(i))a y(i)>
e formulation with regularization:
minimize  f(0) = L >, [(go(zP), y) + ~r ()
e stochastic gradient descent (SGD):
gkt _ (k) _ oszf(H(k))

e some other momentum and adaptive methods:
— Nesterov's accelerated gradient method, AdaGrad, RMSProp, Adam, etc.
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Optimality

e How can we maximize the chance to reach (points close to) the global optimum?

— stochastic gradient method?

— some second-order method?

e How do we prevent overfitting?

e Is reaching the (near) global optimum always a good thing?
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In summary
e convex optimization problems are one of few optimization classes that can actually be
solved
e many ML problems are (or can be cast into) convex optimizations
e knowledge on (convex) optimization helps a lot to solve many Al problems
e ML is not about algorithms; it's about machine power + (dumb) intelligence

e diverse perspectives/principles must be mastered for good Gaussian applied scientists!
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Thank youl!



